
Monthly Digital Functional Programming Magazine

01

FP LINE
for theCHANGE HERE

November 2020

We are delighted to introduce the inaugural issue of Bind The Gap!

Bind The Gap (BTG) is a functional programming magazine that reflects our
thoughts and vision on the topics of current interest.

The idea of creating a magazine came to us while we were discussing news in the
Haskell world, as we always do. We thought that if we have a platform where we
would be able to expand interesting discoveries and events, and add our
thoughts to it; it would be actually attractive to those who share the same
passion in FP and Haskell in particular.

The goals of Bind The Gap are to elucidate Haskell news, comment on actual
issues, meet and introduce wonderful Haskellers, popularise Haskell and FP,
involve people in more open discussions, and share our vision and positions.

The "pilot" issue of the magazine is focused on the most eminent news that we
are excited about. It also introduces the permanent columns that shed light on
the different aspects of Haskell: GHC proposals, beginners information,
challenges and more!

Thanks a lot to everyone involved, particularly: Simon Peyton Jones for kindly
accepting our interview; Alexander Granin for his book and interview; Impure
Pics for the incredible "Pure Gold by Impure Pics" section; Cate Roxl for
proofreading. We appreciate your time and collaboration!

Without further ado, enjoy the first issue of BTG and let us know how you liked it!

{- | Introduction

Dmitrii Kovanikov <> Veronika Romashkina,
Editors-in-Chief
-}

MAP LINE FOLD LINE

Interview with Simon Peyton Jones
about Haskell Foundation

Let us in novate
The of-lambda GHC proposal

overview

Whine Sommelier
Review of the aeson library

The -Wall Street Analytics
Analytics of the

-Wunused-packages warning

Librarian
Review the newtype helpers

proposal to base

Illustrations by Impure Pics

News from all around the Hello World
The best ways to create projects
in Haskell

What's the readIO?
Interview with Alexander Granin
about his book Functional
Design and Architecture

Fun for the whole type family
FP Humour, challenges, puzzles
and surveys

Pure Gold by Impure PicsLoco-Motive
3-7

8-9

10-12

13

14

15

16-17

18-20

21-23

LOCO
MOTIVE

November started with a piece of excellent news for Haskell. Wonderful Simon Peyton Jones officially announced the creation of
the Haskell Foundation (HF) [1] at the beginning of this month. This is a crucial step towards a brighter, and more importantly, a
more definite future for the language and its users. We couldn't walk past such an exciting occasion, so we decided to get more
information about the Haskell Foundation — look closer on what it means for us and the language, understand how it works, and
find out if any of us could be part of this.

 Here is the official description of what the organisation represents:

LOCO
MOTIVE

The Haskell Foundation is an independent, non-profit organisation
dedicated to broadening the adoption of Haskell, by supporting its

ecosystem of tools, libraries, education, and research.
HF is supposed to become a glue for different subcommunities within the entire Haskell ecosystem. The primary goal is to enable
diverse and separated groups to work more efficiently by helping each other and collaborating on a more fundamental level.

HF was met with the support from companies that use Haskell as the primary language, and they decided to sponsor the
organisation. This shows the great significance of such structure to consumers. HF could use their donations to hire different
people for solving long-standing problems. For example, one of the things on the priority radar is fixing the Windows support,
which would improve the user experience for the specific group, and companies that were limited by these restrictions.

HF became a trending and hot topic after the announcement. There are very positive vibes from all people, which proves that
something like the organisation is the long-awaited hope for all Haskellers. We've collected a few opinions on what people think
about the Haskell Foundation.

We spoke to Simon Peyton Jones to get more insights on HF and got the opportunity to find out fascinating points from the
Haskell-star himself!

[1]: https://haskell.foundation/

https://haskell.foundation

Q: How and when did the work on HF begin?
Simon: It all started fairly recently, actually.
Around May this year (2020), I started talking to a
small group of people involved in: myself, folks at
Tweag and the folks behind the reborn Skills
Matter. So we got together and started thinking,
"Maybe something like the Haskell Foundation would be
really helpful to have?" And then we wrote a white
paper about it.

Within a couple of weeks, we started to share the
paper and ideas about it with the members of the
community. So we very rapidly grew, because to
everybody we spoke to, we offered to join the
working group and involved them in future
conversations. Eventually, it wasn't long before we
were starting holding fortnightly discussions.

I think we started with the Haskell.Org
Committee. We first spoke to Jasper, the Chair of
the committee, and the other members. Then we
went around the other obvious stakeholder groups
and the Haskell committees: the Core Libraries'
committee, the GHC Steering committee, Cabal,
and Stackage.

It all took a bit of time because, at that stage, we
didn't want to publish something and then have
everybody only read about it in the newspaper and
think, "Oh, I don't know about that." We'd rather say:
if you would like to be part of this, come and help
shape it. Because we really didn't have the answer.
It was more like, "We have some challenges and
some ideas about things we might do about it;
would you like to share with us in doing something
together that will help address those challenges?"
So it was a process of accretion, a larger and larger
group of people to be involved in, that was the idea.

Q: You covered the reasons for creating HF in
the launch talk, but could you briefly share
your opinion of them here? Why did you
decide that it's time for HF?

Simon
Peyton Jones

Haskell and GHC lead designer
and developer, principal
researcher at Microsoft

Research in Cambridge, chair of
the Computing at School

It's really important that we, the community, feel that the foundation is something we are doing together, not that it is something that somebody is doing to us.

Simon: The Haskell community is like my family.
I used to know every single person in it. And now
it's much, much bigger. And that's great because it
means that more people are using Haskell for more
real things, but it also brings the challenges of
scale. So I ended up trying to distil them down to
four underserved needs:

1. The full user experience, the user journey. When
somebody starts using Haskell, do they find the
tools smooth? Do they work together well? Is it well
documented? Is the training adequate? And so
forth.

I think there were lots of people who are interested
in pieces of that picture, but no one who really

stands in the shoes of the user and as well gives the
voice to the user who is going through that journey.

2. Technical infrastructure and glue. We have lots
of individual groups that are really efficient at
building Haskell tools: e.g. GHC – my own true
love – Haskell compiler is one of them; Cabal,
Stack, Hackage, Haddock, the Haskell IDE and
many more. There are lots of pieces, but they are
served by individual groups that work really hard
and very professionally. But somehow we lack
connective tissue to make sure that all these pieces
of any structure will work together well. Sometimes
we accidentally mess each other up, and that's
really sad when that happens.

3. Community glue. We've got quite a rich, diverse
community, but no one is responsible for glueing us
together. And I often feel that volunteers can get
an incredible amount of work done. But also
volunteers need a certain amount of coordination.
They work together better if there's someone, or
some group, or some mechanism for them to
cooperate.

4. Resources and funding. The Haskell community
and its ecosystem have got to the stage where we
have so much to do that it's really hard for
volunteers to sustain the required amount of effort
and attention to detail. And so what do we need?
We need some people whose full-time day job is to
look after some of these boring but useful things.
But if it is going to be their day job, somebody's got
to pay for it. Who's going to do that? One
possibility is to have a credible foundation, a non-
profit organisation to which willing partners can
give money, feeling confident that it will be well
spent in the service of the user journey. And up to
now, we haven't really had such a credible donee.
That's part of what I hope the foundation might do.

Q: Did movements like "Simple Haskell" or
"Boring Haskell" have their effect on creating
HF?
Simon: I don't think those movements did
specifically. But the strong point of the residence is
that they were concerned with the users' journey.
They're rooted in the idea of "let's not make
Haskellers run away by pointy-headed people like
Simon who think that impredicative types are
really cool". But let's make sure that we have a
vehicle that is suitable for building large scale
software in production. "Simple Haskell" or "Boring
Haskell" movement is one approach to doing that.
I'm not sure that everybody agrees with that
approach, but it's one. And it clearly is an
approach that's started in "let's make it useful, but
let's concentrate on usage rather than on demand
or supply". So to that extent, totally on board. But I
wouldn't say that those two movements were
specifically at the root of the logic of the
foundation.
Q: How did you choose the people who are
willing to help the foundation?
Simon: Essentially, we tried to contact every
stakeholder who had an influential role in the
Haskell community. I'm sure we left people outside;
I am cautious about saying this. It's really hard to
be comprehensive. We've got Haskell.org first, then
the Core Libraries committee and the GHC
steering committee, the Cabal and the Stackage
folk, Haskell IDE team, the Haskell Weekly News,
the Hackage trustees, and the Haskell admins.

We wrote a list, in which we tried to include
everybody who we thought had some kind of
collective identity and made a contribution to the
Haskell community. That doesn't scale very well
because it's lots of individual conversations. And
we flipped a bit by going public at the Haskell
Exchange. Now we're hoping to hold those kinds of
conversations more broadly with the entire Haskell
community.

Q: How will the success of the Haskell
Foundation be evaluated? How would we be
able to say "HF is doing what it is supposed
to do"?

Simon: I often ask this when people submit a
research proposal. I say, "How would I know if your
project has succeeded?" I want crisp criteria, but I
don't think I can offer you a crisp criterion for
whether the HF succeeds. I want the Haskell
community to be friendly, open, inclusive and
welcoming. And, of course, that's a matter of
degree. Probably many people would say that it is
already ideal, and some people would say that it
isn't. And it's a continuum, and different people
have different views. But I really would like the
foundation to make a major contribution in that
direction. I would want no one to bypass Haskell
because its tooling is clunky, or it is on ramps or
too forbidding.

So increase in adoption, I suppose, would be one
criterion. The second one is that more companies
are visibly using Haskell or maybe even signed up
as sponsors, although supporters of the foundation.
But none of these is "we succeeded, or we didn't". It's
not black and white, I'm afraid.

The single most important thing for me is that HF
acts as a glueing entity that makes us all feel that
we're contributing to a shared endeavour in which
we have a voice and from which we get goodness
rather than another free-standing, well-meaning
organisation that's sitting on the side somewhere.

Let's make it useful, but let's concentrate
on usage rather than on demand or supply

So there were four particular things that we
thought might be helped by having something like
the foundation.

I want the Haskell community
to be friendly, open, inclusive

and welcoming.

I don't know how to say this strongly enough, but
it's really important that we, the community, feel
that the foundation is something we are doing
together, not that it is something that somebody is
doing to us. It is not cast in stone. It is not a piece
of concrete. It is shapeable and can be shaped. We
are trying really hard to be transparent in decision
making, governance and how you can get involved.
I'm not saying they're necessarily successful in
everyone's perception. But the goal is that it should
be a community-driven process.

Q: What are your personal plans for the
foundation? How actively are you going to be
involved in the Board decisions?
Simon: That's a slightly hard one to answer.

There's a question of how bootstrapping the HF
gets going. I played a role in that because I'm kind
of visible in the Haskell community and I feel
honoured to be in that position and privileged to
be able to play a small role in helping to get it
going. To bootstrap our process, as I described in
the launch talk, the working group asked Ed
Kmett, Simon Marlow and myself to appoint an
Interim Board.

Besides us, the Interim Board also includes other
well known and trusted people in the Haskell
community: Chris Dornan, Gabriele Keller, Jasper
Van Der Jeugt, Stephanie Weirich, Lennart
Augustsson. The role of the Interim Board is to
appoint the permanent Foundation Board, which
will include 12 members. And we're seeking
nominations at the moment.

Q: Haskell Foundation sounds like a lot of
work, and it took a lot of time and effort. How
did you manage to do all that with full-time
jobs?

Simon: Yeah, that's true! But that's also true for a
number of people in the Haskell community, who
work on GHC, Cabal, Stack, Haskell IDE and so
forth. The Haskell community is built out of
volunteers. There is an old phrase, "If you want to get
something done, ask a busy person."

So I think it's just more of the same that all of the
people who have contributed to the foundation are
busy people, but they've given freely of their time.

Emily Pillmore and Tim Sears have been
particularly generous in giving their time to this,
because the thing is: it's easy to have a meeting,
and everybody says "we should do this, that and the
other", but somebody's got to actually do it! Emily
and Tim have been among the people who've done
well. I'm really grateful to them, but it is a broadly
based thing. So it isn't just that three people have
done everything, some people have worked on the
website, Jasper led the affiliation track, etc. It's just
how volunteer movements work. And we should be
very grateful to the people who've devoted their
time to making it happen.
Q: Do you have any plans on how to make
the process of onboarding and encouraging
volunteers more enjoyable for everyone?

Simon: I think that's a major topic for the HF. And
I don't think I've got any quick answers for you
now. But there is a track which Rebecca is involved
in. She made a recent post on the HF discuss
mailing list, which everybody reading this
magazine should be subscribed to, and in which she
is describing some aspects of volunteer onboarding.

Q: Does this mean that you would be really
happy if more people would use Haskell and
find it more approachable?
Simon: Yeah, yeah, it does! I mean exactly that.

My life's work is the idea that purely functional
programming is an approach to the entire enterprise
of writing programs, of telling computers what you
want them to do; that is radical and elegant and
worthy of greater attention than it has in the past
received.

My life's work is the idea that
purely functional programming is

an approach to the entire
enterprise of writing programs.

That is radical, elegant and
worthy of greater attention.

That idea has been seeping into mainstream
programming brains over the last 30 years quite
effectively. And Haskell has been an excellent
vehicle for making that happen. So in the end, I
don't know whether it's that everybody will be
programming in Haskell, but I think there's room
for more mindshare for Functional Programming.
And therefore, the HF promoting Haskell is not a
narrow thing: "We want them to use our product". It's a
broad thing — we want them to get the idea of
purely functional programming and use it to make
their lives better.

I am currently chair of the Interim Board, but I'm
definitely going to continue to be involved in HF in
the longer term. The Haskell community is my
second family, and I'm not going to bow out of it.
But nor would I like to feel that I'm essential to it
either. Otherwise, it's a bad single point of failure.
I'll be delighted if we found a board that wouldn't
include me, but would be well led and strong. I've
got that far to decide whether I'll self nominate to
be on the foundation board, let alone whether the
Interim Board will appoint me. (*laughs*)

But the ideal for me
would be strong,

motivated leaders
from diverse

backgrounds, ages
and so forth, to lead

the HF.
I would be thrilled to bow out at that stage to be a
quiet voice behind the scenes, which we shall see.

Q: What are the criteria for diversity in the
board?

Simon: We tried hard to write down criteria for
nominations. So I'd encourage readers to look at
the call for nominations on the HF site because a
fair amount of work goes into trying to say "we
don't want to stick our fingers in the air". We want to
have some written criteria so that nominees can
say, "I think I meet these criteria". For example, they
meet A, B and C, maybe not D, so then the Interim
Board can evaluate against those criteria.

Diversity is certainly one of them. But we haven't
set quotas; we haven't said "We will have three people
from the USA and two from Europe or we have two
people with fair hair and four people with brown hair".
We've just listed a number of constituencies that we
would like to see represented on various axes:
gender, geography, age, stakeholder groups to
represent users or suppliers, the academic versus
industry. And we wrote down as many as we could
think of. Any one person is not going to represent
all of those. And inevitably, 12 people are not going
to provide a completely balanced representation of
all possible axes here.

Q: Among the values of HF is transparency.
How much of this value extends to the board
members selection process?
Simon: I don't think we'll make nominations
public. We didn't say that we would nor do we
want to give rise to a new ad hominem personal
debate about why you appointed X instead of Y,
I'm not sure that would be helpful to us.

So I'm hoping that because we went to some effort
to get the Interim Board appointed through a
whole other layer of mechanism, we got people in
the board that everyone will be prepared to say,
"OK, I haven't seen all the nominations, but I just trust
this group to have done at least a reasonable job". And
then that board, in turn, will appoint successors
according to criteria it will establish probably
closely based on the ones we have.

The diversity of all of these dimensions is really
important, this whole point, if the foundation
comes to be seen as being run by a particular
interest group, it will fail. So, yeah, tricky
(*laughs*), because I'm sure it will not be as
perfectly diverse as we would like.

Many thanks to Simon for such great thoughts and revelations shared with us today! Both Simon and we encourage you to subscribe
to HF-announce and HF-discuss mailing lists [1] to get updates about news in HF.

Moreover, don't forget to nominate yourself for a board
member [2] or even as Executive Director! And remind your
friends to do so. As Simon pointed, it would be crucial to have
a diverse board, so it doesn't matter how experienced you are
in Haskell, we need both beginners and experienced industrial
users to represent different groups in the board. If you have
passion for the language and want to help achieve HF goals,
join in!

We wish all the best to the noble idea of Haskell Foundation, and are looking forward to its future successes!

The diversity of all of these
dimensions is really important. If the

foundation comes to be seen as
being run by a particular interest

group, it will fail.

There's a little working group thinking about how
to make the process of being able to volunteer for
things in the Haskell ecosystem not to big up the
foundation, but just to make the Haskell ecosystem
better, how to volunteer and how to make that
process easy and rewarding. It has to be fun! And
you have to get some level of recognition and a
little or no aggro (*laughs*).

I think if anybody reading this article is interested
in that, it would be great just to join the working
group.

So, no, we haven't established quotas. We're just
going to do our best to make choices that balance
those probably conflicting criteria as best as we
can.

[1]: https://haskell.foundation/en/contact/
[2]: https://haskell.foundation/board-nominations/

https://haskell.foundation/en/contact/
https://haskell.foundation/board-nominations/
https://haskell.foundation/board-nominations/

+ let us
+ in novate

diff a/Haskell b/Haskell
@@ -1,1 +4,2 @@

~PROPOSALS TO
IMPROVE GHC
AND HASKELL
LANGUAGE~

Most Haskell developers use the handy
LambdaCase GHC feature daily, which
allows writing clean pattern-matching for
the single argument functions, like in the
example below:

fromMaybe :: a -> Maybe a -> a
fromMaybe def = \case
 Just x -> x
 Nothing -> def

If you haven't heard about LambdaCase,
the LambdaCase in the wild [2] blog post
gives a solid overview of this extension with
samples.

However, the power of LambdaCase is not
always enough because it has a particular
application area. And admittedly, GHC
has a proposal for an alternative improved
version — MultiWayLambda extension. The
proposal introduces the \of syntax similar
to \case but has more control, with the
logical consequence of deprecating
LambdaCase and MultiWayIf extensions as
less expressible after the newer addition.

To give you an impression of the new
syntax, let's look at how a simple function
can utilise this new feature for good.
Consider the definition of zipWith:

You can see how the name of the function is
repeated multiple times. This becomes
problematic and noisy for functions with
long names and/or lots of arguments. The
of-lambda proposal offers a nicer way to
implement such functions:

Note that currently, you can't use
LambdaCase to achieve the same level of
clarity. It would only allow you to do so
with the last argument. Alternatively, you
can use case-of expressions as well, but here
lambda saves us a few intermediate
variable names. Moreover, you can't
smoothly pattern match on multiple
arguments with case-of.

But it is not all that the proposed extension
can do. Another benefit of the of-lambda
syntax is that it also supports guards-only
expressions, unlike \case. The ultimate goal
of this proposal is to consolidate two
existing GHC extensions LambdaCase and
MultiWayIf into a new single extension,
making those two deprecated and probably
rolled out eventually.

λ

For today's theme, we want to discuss one of
the proposals, potentially affecting lots of us
— `\ of`-lambda expressions with guards and
multiple clauses (-XMultiWayLambda) [1] by
Jakob Brünker.

zipWith
 :: (a -> b -> c)
 -> [a] -> [b] -> [c]
zipWith _ [] _ = []
zipWith _ _ [] = []
zipWith f (x:xs) (y:ys) =
 f x y : zipWith f xs yx

zipWith
 :: (a -> b -> c)
 -> [a] -> [b] -> [c]
zipWith f = \of
 [] _ -> []
 _ [] -> []
 (x:xs) (y:ys) ->
 f x y : zipWith f xs ys

While users may be excited about this new
feature, how it can simplify both the user
code and the GHC codebase, there are a
few concerns.

At some point, the discussion around the
proposal tended to deprecate the existing
syntax of LambdaCase by forcing the use
of parentheses around patterns.
LambdaCase is one of the most beloved
and popular extensions — the most
desirable extension to be enabled by default
according to the 2020 State of Haskell
Survey [3] results and already the 6th most
commonly used extension [4] in default-
extension on Hackage. So it’s no surprise
that not everyone is okay with deprecating
such a widely used feature. These changes
affect a massive number of people, at least
in the way that a lot of work needs to be
made from the users' side — to align with
the changes, even if LambdaCase is
precisely enough for your case and there is
no need for an immense extension.

If these discussions stick, after the of-lambda
proposal is accepted and implemented,
users will need to rewrite the previous
fromMaybe example with extra () around
the patterns:

The required changes are understandable.
But we all love LambdaCase because it
allows us to write clean and concise code,
and it is not always worth it to give up the
comfortability. Notwithstanding the fact
that deprecating old syntax will break tons
of packages. Which is, compared to the first
argument of slightly better ergonomics,
sounds quite huge.

A comment under the GHC proposal [5],
asking not to deprecate LambdaCase,
collected 54 upvotes,

 meaning there are a lot of people who also
don't support the removal of this feature.
This wish doesn't contradict with having an
improved mechanism of lambdas; instead,
users want to keep the useful tool that they
use ubiquitously.

We will keep you updated about the
changes in this proposal, and hope that
spreading this information wider and
speaking with Haskell users directly would
help with gaining an understanding of the
real needs of the people, which can be acted
upon accordingly.

In any case, there is a lesson to learn from
this proposal. Innovating and improving
the language is a noble deed. However, it is
more efficient and healthy for the tool to
include its users in the decision-making
process rather than just notify post-factum.

Ultimately, such massive behaviour
changes could only happen if the following
measures are to be taken:

If you have thoughts about this proposal,
speak up. Maybe we all can come up with a
better compromise that would work for the
greater intersection of people. We know
that maintaining GHC breakages is tough
and time-consuming, and it can actually be
avoided by other approaches to the new
extension. In the case of agreement between
users and implementers, we could have a
brand new feature and keep enjoying our
beloved LambdaCase.

What a wonderful world it would be!

Possible breakages are discussed in a
more public place, and the voice of
real users is heard and taken into
consideration

In case if breakage is inevitable, there
should be tools for automatic code
refactoring

fromMaybe :: a -> Maybe a -> a
fromMaybe def = \case
 (Just x) -> x
 Nothing -> def

[1]: https://github.com/ghc-proposals/ghc-proposals/pull/302
[2]: https://storm-country.com/blog/LambdaCase
[3]: https://taylor.fausak.me/2020/11/22/haskell-survey-results/
[4]: https://gist.github.com/nomeata/3d1a75f8ab8980f944fc8c845d6fb9a9
[5]: https://bit.ly/lambdacase-comment

Sommelier
~Degustate different libraries and check them against our appetite*~

If you need to parse JSON in Haskell, aeson** is the standard choice (and, frankly speaking, the

only pragmatic choice). We want to see how this standard go-to elect meets the requirements to

be user-friendly and ready for real-world needs. So here goes our review.

The internal architecture overview: JSON parser in aeson is based on the attoparsec library that

provides fast parser combinators for parsing ByteString and Text. In addition to parsers, aeson

contains FromJSON and ToJSON typeclasses for converting between Haskell values and the

unified JSON representation in the library.

Let's review aeson under different angles and see how suitable it is for production needs! We are

going to examine the latest version from Hackage, which is 1.5.4.1 at the moment.

aeson
2011

WHINE

* https://bit.ly/btg-lib
** https://hackage.haskell.org/package/aeson

Documentation is an essential part of
evaluating the user experience of the library.
There are lots of ways to help your users by
providing different types of documentation.

Aeson has a short top-level description in the
.cabal file and README. However, the
primary and most valuable piece of
documentation is in Haddock for the main
module, which is pointed out in the description.
Haddock is the Haskell way to document your
code, which later is available nicely on
Hackage.
Module documentation is good, though it does
not cover all exported functions and types.
Some instances have @since annotations which
are invaluable for production users. But this is
applicable only for a few recent versions of
aeson, which suggests that the annotations
weren't maintained previously, and it would be
tricky to get the information of the version
where the function was introduced first.

Sometimes the default documentation is not
quite sufficient to start writing non-trivial
decoders straightaway, but multiple
comprehensive blog posts can help you in this.
Check out Aeson: the tutorial [1], A cheatsheet
to JSON handling with aeson [2] and many
others.

The documentation contains a lot of code
examples, which is neat! But they are not tested
automatically. Using doctest for aeson would
be a considerable improvement in
maintainability of doc examples and up-to-
date information!

Aeson is a de-facto standard library. Another
good addition to proudly carry the title would
be the comparison with other JSON decoding
and encoding libraries, such as hw-json and
waargonaut. To be a high bar library, it is
crucial to be forthright about the
(dis)advantages of using aeson over other
options, so the choice of a JSON library would
be more reasonable to users' needs.

Documentation

Ease of use
Next, we shall evaluate how comfortable to get
started with the library and how friendly it
would be in the long term for direct users.

The library provides quite a powerful API for
parsing arbitrary data.

[1]: https://artyom.me/aeson
[2]: https://williamyaoh.com/posts/2019-10-19-a-cheatsheet-to-json-handling.html

There are a lot of functions and type
classes exported, which strews a flexible
fundament for building encoders/decoders of
different complexity. However, we'd say that
you need to train quite a lot in writing parsers
manually and read a few blog posts to
understand the design truly and to become
fluent with the API. For example, the JSON
AST type Value has a naive FromJSON
instance. Knowing this fact and understanding
the instance behaviour is crucial for manually
parsing nested JSON objects, for example,
[{"key": 42, "val": "foo"}].

The aeson API is stable, so there are no
problems in frequent upgrades.

The library has several C files in dependencies
for faster JSON parsing. Still, they are included
conditionally only for supported platforms and
compilers, which make aeson cross-platform
and easy to depend on.

Aeson is infamous for its poor error messages,
which could be challenging for the library
beginners. However, there are external
solutions like aeson-better-errors that are
improving the situation.
Generally, even if aeson misses some of the
features, there usually exist some integrated
solutions in the wild. For example, aeson
doesn't provide JSON pretty-printer out-of-the-
box, but luckily, you can add one more library
aeson-pretty to have this. In total, there are a
lot of libraries that integrate with aeson, so the
ecosystem support is vast and comprehensive.

Regarding the comfortability of module usage:
to get the main aeson functionality, it is
enough to import the Data.Aeson module.
However, the library is not designed for
qualified imports. And at the same time, it has
name conflicts with other libraries sometimes,
so you often end up with the mixed imports:
qualified import of the main aeson module and
a single unqualified import with restricted
items as qualified operators doesn't look very
pretty.
import qualified Data.Aeson as Aeson
import Data.Aeson ((.=))

Moreover, if you want to write a custom parser
but not the instance, you need to import
Data.Aeson.Types (and not even
Data.Aeson.Parser), so the ergonomics suffer a
bit here.

From the maintenance point of view, aeson is
an exemplary library.

Aeson follows PVP (versioning policy) and
provides both lower and upper bounds for all
its dependencies, so building aeson gives
predictable and robust results.

The CHANGELOG is maintained in good
faith, and it is detailed and gives sufficient
information about what happened in each new
release. The migration guide for the major
releases is not written as clearly as it could've
been, though it is possible to see what needs to
be done from the neat CHANGELOG as it is.

The development of the library is active, and it
has several responsible maintainers who are
looking after the library constantly. If you have
any problems with aeson, you can submit them
to issue tracker, most likely to receive the
answer. But it still has open issues dated 2014,
and some issues don't have any comments at
all. Moreover, the library has a dozen open
PRs, and some of which stalled since 2016;
although it is understandable for an extensive
and popular across-the-board library, ideally it
would be nice to have them resolved in some
way.

Aeson has a CI set-up that checks its
compatibility with GHC versions up to even
GHC 7.8.4! So the newer releases are unlikely
to break anything.

Maintenance Code quality
The library code is quite clean and readable.
Aeson compiles with -Wall without any
warnings produced by GHC, though no
additional warnings are enabled besides -Wall.

However, aeson has a lot of HLint hints
(checked with hlint-3.2.1) and Stan warnings
(checked with stan-0.0.1.0). For example, usages
of unsafeCoerce, many usages of undefined.
And the standard API operators don't have
explicit fixity declarations.

Testing is also covered well in aeson (though,
no doctests as mentioned before). The
documentation contains a few Haddock
warnings. So, even mature libraries can
improve quality in many ways!

It is not a secret that aeson is quite a heavy
library. Unfortunately, it has a lot of
dependencies, and their number is only
growing (e.g. the recent addition of these to
dependencies). As a result, the library itself
takes a noticeable amount of time to build. So,
if you want to write a small JSON-parsing
script quickly, you will have to wait a lot for
the library and all its dependencies to finish
compiling, so this is not for impatient people.

Fortunately, there are some options here. If you
want to have a lightweight JSON parsing, you
can use microaeson. If you need only JSON
encoding, you can use the recently released
jsonifier package that provides blazing fast
JSON encoding.

Summary

Aeson showed itself as a very fine and stable library!
But as the standard JSON parsing library, aeson is not ideal, and can do better. There is a big room for
improvement, and a lot of people will benefit from patches to aeson, so if you have ideas for
refinements, feel free to contribute as maintainers seem to be considerable!

Documentation: 7.5 / 10 (Solid)

Ease of use: 6.5 / 10 (Good)

Maintenance: 9.5 / 10 (Amazing)

Code quality: 5 / 10 (Fair)

Summary: 7.1 / 10 (Solid)

The -Wall Street Analytics
GHC options, warnings and flags

Afterwards, you can go and remove the
redundant dependency from the stanzas, specified
in the warnings.

But why should you remove unused dependencies
in the first place? This is an important thing to
do, because having a dependency is not free, and
it is crucial to keep it clean in your library or
application for many reasons. First of all, they
can be heavyweight and therefore, add a
significant amount of extra time to your project
compilation.

Moreover, if it is a library, users may consider
using a different one instead, only because of
heavy dependencies. Also, redundant
dependencies can break your code implicitly
when migrating to newer versions of other
dependencies or even GHC itself.

The only thing to keep in mind with this new
option is that this sanity check doesn't warn on
dependencies that you don't use directly, but
which are used by some other dependencies of
yours. So implicit dependencies are invisible for
-Wunused-packages. But hey, who said it's not
possible to improve the situation? ὤ�

warning: [-Wunused-packages]
 The following packages were specified
 via -package or -package-id flag
 but were not needed for compilation:
 - async-2.2.1

 if impl(ghc >= 8.10)
 ghc-options: -Wunused-packages

In this edition of the "The -Wall Street
analytics" column, we want to shed light on the
-Wunused-packages [1] GHC warning.

This warning was introduced in GHC 8.10.
However, it's not enabled by default, nor it's
included in -Wall at the moment.
To enable it universally for your project, add
the following lines to the .cabal file (we
recommend putting such warnings into a
common stanza [2]):

If you create Haskell packages using
Summoner, you will have this warning
configured properly in your .cabal file out-
of-the-box.

[1]: https://bit.ly/wunused-packages
[2]: https://vrom911.github.io/blog/common-stanzas

After enabling -Wunused-packages, GHC will
warn you on having unused dependencies in
your Haskell packages. The output will look like
in the example below:

LIBRARIAN

As the standard library, base has a special place in
the hearts of many Haskell developers. But like
any library, it needs to be refined from time to
time. However, as those changes need to be
weighed against the fact that it is massively used,
there are two sides of the coin. On the one hand,
some long-awaited changes to the APIs are
welcomed by its users, but on the other hand, they
can break workflows and programs. That is why
proposals to base are discussed thoroughly.

~ Discussions and review of proposals to
standard libraries ~

This time we would like to review
the Integration of helpers to
operate on Newtypes in base [1]
proposal by Hécate. It suggests the
addition of a module called
Data.Newtype with the helper
functions to work with newtypes
easily (e.g. un for unwrapping
newtypes).

Newtypes are one of the crucial Haskell features,
and it enables multiple design patterns, which you
can read about in the Haskell mini-patterns
handbook [2]. That is why this proposal is a handy
addition to the friendliness and completeness of
the standard library.

The improvements suggested in the proposal are
inspired by the existing newtype helpers [3] from
the alternative standard library called relude. So
the proposed changes are already battle-tested by
different people and proved to be useful.

Despite the good intention behind the proposal,
however, many people seem to not be in favour of
these additions for different reasons. One
mentioned cause against adding new functions is
that un @Int is not better than coerce @_ @Int,
though we don't think that many people would
agree with this statement, but most probably they

are not on the mailing list to do so. Another
reason is that the function un not only unwraps
but also wraps into a newtype. This can lead to
unforeseen results if you are not familiar with the
Coerce typeclass.

There was a brief discussion in the past about
implementing unidirectional coercible [4] in
Haskell, and such a feature can indeed help with
many cases, including newtypes helpers. But the
non-welcoming reaction to the proposal feels like
the Haskell community again lets perfect be the
enemy of good. Instead of encouragement and
discussions of possible ways to improve the
situation along with helping as many developers
as possible, most of the people involved in the
mailing list's discussion find more and more
elaborate reasons to prevent this proposal from
happening.

The UX of Haskell developers can be improved
significantly, and it is fantastic how much we can
do with what is already implemented! But we can
not always afford to wait for the ultimate solution
to arise. Often iterative and incremental
improvements can bring a lot of invaluable
benefits.

[1]: https://bit.ly/base-newtype-proposal
[2]: https://kowainik.github.io/posts/haskell-mini-patterns
[3]: https://bit.ly/relude-newtypes
[4]: https://github.com/ghc-proposals/ghc-proposals/issues/198

by Impure Pics

Pure Gold

Distilling functional programming for the
good of all

Impure
PICS

FP Artist & Content maker

NEWS FROM
$ Hello, World!

 -o#&&*''''?d:>b
 o/"`'' '',, dMF9MMMMMHo
 .o&#' `"MbHMMMMMMMMMMMHo.
 .o"" ' vodM*$&&HMMMMMMMMMM?.
 ,' $M&ood,~'`(&##MMMMMMH\
 / ,MMMMMMM#b?#bobMMMMHMMML
 & ?MMMMMMMMMMMMMMMMM7MMM$R*Hk
 ?$. :MMMMMMMMMMMMMMMMMMM/HMMM|`*L
| |MMMMMMMMMMMMMMMMMMMMbMH' T,
$H#: `*MMMMMMMMMMMMMMMMMMMMb#}' `?
]MMH# ""*""""*#MMMMMMMMMMMMM' -
MMMMMb_ |MMMMMMMMMMMP' :
HMMMMMMMHo `MMMMMMMMMT .
?MMMMMMMMP 9MMMMMMMM} -
-?MMMMMMM |MMMMMMMMM?,d- '
 :|MMMMMM- `MMMMMMMT .M|. :
 .9MMM[&MMMMM*' `' .
 :9MMk `MMM#" -
 &M} ` .-
 `&. .
 `~, . ./
 . _ .-
 '`--._,dd###pp=""'

all around the

Beginner-friendly notes, tools, tips and tricks. All you need to get learning Haskell easier.

Haskell is a unique language that motivates
people to learn something new each day. While
experimenting with lots of different concepts,
approaches and new ideas, we always find
ourselves in need of a magic wand that can
quickly create a buildable project template
which will contain all necessary things, so we
can focus on the idea and leave all the boring
stuff to some tool.

Haskell has several ways of starting using the
language locally:

How to play with Haskell

Define and evaluate expressions directly
in GHCi — an interactive command-line
REPL.

Project and package are two concepts that come
close to each other and sometimes could be
mixed up due to their similar nature. Let's
discuss the difference. The Haskell project is a
more broad concept than the package. Any
package is a project, though a project can
contain one to many packages. If the project has
more than one package, it is called a
multipackage project.

Hackage — the Haskell central package
repository (similar to npm) – has only a notion
of packages. So even if you have a project with
multiple packages and want to make it public
and easily accessible to everyone from Hackage,
you need to upload all packages separately.

Each package, in turn, comprises stanzas –
Haskell package units. The examples of stanzas
are library, executable, test, and benchmark.
Each package can have zero or more units of each
stanza type, but it must contain at least one
stanza.

At the beginning of your journey, you usually
use the first two options, as they have the least
overhead, and don't require you to know much
besides the language syntax itself.

GHCi is an extremely useful tool for
experimenting with various functions, calling
them with different arguments to see the results,
inspect types of expressions, and so on. But
creating longer multi-line definitions in GHCi is
awkward and doesn't suit for an active-
development mode.

Here Haskell files (aka modules) come to play.
You can define your own functions and even
custom data types quickly in a separate file

Write definitions in a file (module), and
load it in GHCi or compile directly to
binary using GHC.

using your editor, and then load modules in
GHCi to play with your functions in a familiar
manner of Haskell REPL.

However, when starting to do something more
sophisticated, a single module is not enough
anymore. You often find yourself in need of
creating a complete project with various
modules and metadata content. This is the time
for making a Haskell project.

Scaffold a buildable project with library,
executables, tests and benchmarks.

Create a runnable script.

Package
Projector

Stack templates — creates a project based on
some custom template with the configurable
variables. This option is useful for creating
multiple projects of a similar structure so
that you can utilise templates for CLI tools,
web-backend services, etc.

Sometimes you don't need the full power of a project.
You just want to have a single file (that maybe uses a
few external libraries) to experiment or do some
small task. For instance, analyse the content of local
directories, fetch and parse JSON, process some CSV
files, etc. For this task, you can use a feature called
Haskell scripts — executable and runnable
standalone Haskell modules.

A script starts with shebang — a special line to tell
how to execute the script. Shebang is followed by the
Haskell comment, containing the description of all
external libraries. The description format is different
for Cabal and Stack build tools. And then, the
Haskell code itself.

Remembering the required script header can be
difficult, but you can create a basic script with all
the boilerplate using Summoner, and start hacking
in seconds!

Summoner [3] — the CLI and TUI tool to
scaffold fully configured batteries-included
production-level Haskell projects. Use the
summon new my-project-name command to
create a new Haskell project interactively
and choose all options you want. The options
include all possible project configurations
that previous options supply, plus additional
features, like CI, appropriate options and
more comprehensive metadata.

stack new — the new command of the Stack
[2] build tool. This command creates a
library with executable and tests and uses the
latest stable snapshot of Haskell packages
from Stackage.

cabal init — the init command of the cabal-
install [1] build tool. This command creates a
package with a single executable by default.
If you want to make it more configurable,
you can use the global cabal configuration
file, or search for the necessary CLI options
that do what is needed (e.g. add tests or
benchmarks, create a library, change the
default license, etc.).

Most Haskellers create a few projects per month
for personal usage. No matter if you are only
learning the language or you are a library
maintainer, the frequent need to create a ridge
for your next project instantly is not much to
ask for. Besides the Haskell code itself, the
project usually contains .cabal files with the
packages metadata (name, version, description),
changelog, license, CI configuration, etc. You
can imagine how creating all those files from
scratch each time you need to scaffold a new
project is a tedious job.

The Haskell ecosystem has a few options on how
you can do that. It depends on the build tool
you use, add-ons that you always want to have,
and personal taste.

Summoner doesn't come with the default set of
Haskell tools, unlike Cabal or Stack. However, you
can install Summoner easily either by installing
from Hackage, downloading a binary directly from
GitHub releases or via package managers Ubuntu
PPA and Homebrew.

Happy Haskell hacking everyone, and let's make the
process of learning/experimenting/creating with
Haskell as easy as possible!

[1]: https://cabal.readthedocs.io/en/3.4/index.html
[2]: https://docs.haskellstack.org/en/stable/README/
[3]: https://kowainik.github.io/projects/summoner

What's the

readIOreadIOreadIO
?

Recently, Alexander Granin shared great news
about his book "Functional Design and
Architecture" — the print version is ready, and it
looks fabulous! So, if you don't have a copy yet, now
is the best time to purchase it.

FDaA is a gigantic piece of work by Alexander. The
book is about building real-world Haskell
applications focused on the Hierarchical Free
Monads approach. The ultimate benefit is that this
resource walks readers through all steps of
creating applications, explaining different essential
Software Development patterns and concepts along
the way. This makes the book unique. And we
suggest Haskell engineers familiarise themselves
with the outstanding approaches of the book, even
if they already have experience with other ways to
develop the products.

application architectures, design ideas and best
practices. Its part, Software Design, tells us how to
compose a simple, testable, maintainable software
with low coupling and low risks. If you are a senior
software engineer, you can’t just hack the code —
you should think about separation of concerns,
interfaces, subsystems, design and semantics of the
code, and how the project will be evolving with
time. This was a different mindset than we saw in
the Haskell community 5 years ago. Not only
because it resembles mainstream reasoning, but it
also requires a certain level of understanding of
how the software industry in the real world works.

I started thinking about all this in 2015. Doing
some investigations on this theme, and I wanted to
find a set of ready approaches and patterns in
Haskell similar to, let’s say, in C#. There were a
few, but nothing organised and elaborated
systematically. No good showcase projects, no well-
described success stories, and even the very

Alexander: It was 2015 when I realised that I
couldn’t really build programs in Haskell. I knew
Haskell well and could use some of its
sophisticated features, and I had some experience
with many popular Haskell libraries. But it turned
out that just knowing Haskell is not sufficient if
you want to build a relatively big and complex
product. Especially if you are going to work on the
code with the team, and keep your project alive
and maintainable for a long time. This task has
been solved in the mainstream world, where
developers collected a lot of practices and
methodologies and organised them into the
Software Engineering discipline. And this is what I
felt was lacking in the Haskell community.

In short, Software Engineering is a set of well-
understood and well-tested high-level approaches,

Before committing into some approach, I
want to know how to incorporate it into my

application, what are the consequences I can
expect long term, why should I use it, and
what are other options I probably need to

examine. I want to be sure that this approach
won’t make my code fragile with time.

Alexander Granin,
speaker,
researcher, author
Expert Haskell and
C++ developer

Q: When did you come up with the idea for
the book? How long have you been working
on it?

We spoke to Alexander about his work and he
shared a lot of interesting details.

discipline of Software Engineering was kind of a
persona non grata. Design patterns? General
development principles? Avoiding shiny new stuff
implemented several days ago in GHC? Why would
one ever want this?

In 2016, I initiated work on my book. I used some
ideas already existing in the community, but also I
found my own ways to build a new discipline of
Software Design in functional programming and
Haskell. It took more than 3 years to write the book,
not counting a two years pause I made from 2017 to
2019. I finished the book only in 2020, and for now, I
can say it’s the most comprehensive source of knowledge
on Software Engineering in Haskell.

Alexander: This is one of those questions that I can’t
answer honestly while staying nice. I’ll try, though. I
provided a lot of talks on Software Design in Haskell.
I wrote a reasonable amount of code to demonstrate
my ideas. I even created several real-world
technologies wholly based on the methodology I’m
presenting in my book. I've been talking about this
stuff in chats, on forums, at conferences. For many
years, I didn’t feel like it was well-received. I
experienced a fair amount of resistance to my ideas in
the past, but fortunately, things have changed since
then. In 2019, I began a Patreon program to finish the
book, and many people became my supporters — I’m
very grateful to them!

Q: How were the community support and
reception?

Q: You mentioned that books like this are filling
the gaps in Haskell resources. What do you
think causes such gaps to exist, and do you
think that FDaA fulfilled its purposes?

But if you compare the number of books, Haskell
will lose dramatically: 20-30 books about Haskell
versus 500+ books on any popular language (like
JavaScript or Python).
We have a lot of exciting articles and posts all
around the web, but these posts don’t provide you
with a complete picture.

Before committing into some approach, I want to
know how to incorporate it into my application,
what are the consequences I can expect long term,
why should I use it, and what are other options I
probably need to examine. I want to be sure that
this approach won’t make my code fragile with
time. Nope. The vast majority of the existing
materials discuss some niceness and coolness of
different aspects of Haskell, in isolation from the
real needs of the industry. It’s all about curiosity,
not about professional software development.

My book goes much further than other resources.
It connects two realities: a Haskell world of deep
functional concepts and the real world with its
problems and difficulties. One should be able to
take my book and build a working piece of
software, on time, in budget, with some
guarantees to not being trashed after a while.

Software Engineering is a set of well-understood and well-tested high-level approaches, application architectures, design ideas and best practices

When I released the book
this autumn, I started

receiving much appreciation.
This is a very rewarding

feeling, and I’m thankful to
all people who bought and

read my book.

Q: How approachable and interesting is the
book for people who use the mtl approach
of architecture? Would it help enlarge vision
on the mtl style as well?

Alexander: Mtl (also called Final Tagless
sometimes) is one of the oldest approaches to
structure the code. It’s probably not an
exaggeration to say that every complex codebase
uses this approach to some degree. I understand
why people choose it, and it works; however, my
opinion is that it doesn’t satisfy several essential
requirements. You may read this as “there are
subtle things which increase risks for the project”.

My book proposes a different approach. I call it
Hierarchical Free Monads. The idea is to have a
notion of a functional interface similar to what
we have in OOP with OOP interfaces. The
separation of concerns should be complete and
unbreachable because once you allow people to do
dangerous stuff, you’ll have a bunch of it in the
big system. But the book is not agitating to forget
mtl completely. In fact, there are sections where
I’m talking about how to use mtl on top of a Free
Monad solution, and provide reasons for that.
The book contains a lot of other approaches and
design patterns, and it will definitely help

Alexander: I strongly believe that there is an intense
field of knowledge that we Haskellers were ignoring
for a long time. In my book, I’m revealing only a part
of it, but for sure, it’s not the end. In fact, there are
several other attempts to fill the same gap. There was
Real World Haskell which is vastly outdated today.
Matt Parsons is writing his own book Production
Haskell. These and other materials are trying to
show that Haskell is ready for real-world challenges.

We have a lot of scientific papers, I guess, 10 times
more than in other communities.

broaden one's horizons. And I believe it is very
approachable to any Haskeller starting from the
intermediate level. I did my best to explain things
like no one before. This is not about the deepness of
explanation, but rather about style and choosing
the right words. I read a lot, I write a lot, and I see
how many technical materials miss the needed
things and describe what would better be omitted.
This is even worse in the Haskell world.

Unfortunately, writing good documentation
requires a very specific skill of, well, writing.
Words, when used right, can do magical things.
And you know, to write a good book you need to
follow three simple rules. Unfortunately, nobody
knows them.

Q: Would you suggest your book to people
with OOP background (with basic knowledge
of Haskell syntax, maybe)?

Alexander: Probably? It will be a little bit tough to
follow the text if one has a shallow understanding
of Haskell. On the one hand, the book is not about
Haskell itself; it doesn’t introduce the language. I
tried to keep the narration as high level as I could
because I wanted to focus on the high-level stuff
rather than bolts and pieces. On the other hand, I
don’t go too deep by leveraging a very smart,
math-like Haskell. I tried hard to avoid that
because I value simplicity very much. There are
some complex concepts used in the last chapters,
though.

I can’t really say how well the reading is, but I
would recommend learning from Haskell books
first. Get programming with Haskell by Will Kurt
will be quite enough. Plus, maybe, some parts of
Haskell in Depth by Vitaly Bragilevsky for a deeper
understanding of the concepts.

Q: Did you hear any "success stories" out of
this book design already?

I don’t go too deep by
leveraging a very
smart, math-like

Haskell. I tried hard
to avoid that because I

value simplicity very
much

But let me share a secret. We’re
going to open source our Haskell

framework as well — EulerHS. It is
an older brother of my Hydra

framework, which I created for the
book as a showcase project.

In fact, they are like twins. We use EulerHS in our
production, and we think it is a remarkable
technology to share with the community. I’m
personally responsible for that, so keep your eyes
on my updates.

working in a real environment. When I started my
book, I couldn’t even imagine that I'd get great
success with my ideas. But there are several
companies in which I used exactly the approach
from the book. This helped us a lot.

You might have heard about this success story, but
let me maybe remind you. I’m working in Juspay, a
well-founded Indian financial company. Its core
logic is written on top of several Free Monadic
frameworks. I was a person who designed those
frameworks, and I’ve shown why it’s beneficial to
go this path. Many different projects were done
using those frameworks, thanks to the great work
of business logic developers. Juspay even open
sourced those frameworks: PureScript Presto and
PureScript Presto.Backend.

Alexander: I knew I wanted my book to be
practical. Practical means overall goal is to have a
working program in the end. It also means “every
moving piece is in the right place; not a single thing is
introduced just to satisfy curiosity”. I could say that
being practical means that you can take some idea
and derive it for your project. Best practices. Ready
patterns. Useful approaches that are proven to be

We are grateful to Alexander for his time and
answers!
We are sure that many of the readers are intrigued
by this book as well, so we are delighted to tell you
that Alexander kindly shared a special promo code
for you on 25% of discount on this book.

https://bit.ly/btg-promo-fdaa

Read good books, folks!

https://bit.ly/btg-promo-fdaa

HumourmorphismHumourmorphism

An Applicative walks into
a bar, approaches two
sitting Monads and asks,
"Can I join you?"

CHALLENGECHALLENGE
yo self

Implement the reverse function using
the sort function (and maybe some
others).

Send us your solutions to xrom.xkov@gmail.com,
or tag @bind_the_gap on your solution in Twitter

and we will highlight the most elegant and creative solutions
in the following issue!

https://twitter.com/bind_the_gap
mailto:xrom.xkov@gmail.com

TYPEemoj inat i on
Guess the standard function by the following type, written in emojis:

The survey of the month is the annual State of the Haskell Survey,
created and maintained by Taylor Fausak. A lot of people submitted
their answers, and you can read the summary of all responses here:

https://taylor.fausak.me/2020/11/22/haskell-survey-results/

If you interested in cluster analysis of the survey results, check out
the following blog post:

https://www.ariis.it/static/articles/2020-haskell-survey-analysis/page.html

We also have a survey! But much smaller. This time we want to hear
what you would like to see in Bind The Gap and how did you like
this pilot issue. Please, use the link below to share your feedback.

https://bit.ly/btg-survey-nov2020

Surveyvor
~ Monthly BTG survey, important community surveys and results ~

https://taylor.fausak.me/2020/11/22/haskell-survey-results/
https://www.ariis.it/static/articles/2020-haskell-survey-analysis/page.html
https://bit.ly/btg-survey-nov2020

Bind The Gap
Service Information
Date:

Time:

When you get a recycling bin delivered you have
to first take it out of the cardboard box and then
put the cardboard in the bin and this is like a real
life sequenceA.

@locallycompact

The next station

Nov 13, 2020
21:59 UTC

Event Sourcing
Dec 2: Haskell Wednesday: Live coding tutorial & free time to mingle
by Berlin Haskell Users Group
https://bit.ly/events-dec-live-coding

Dec 7: Haskell Meetup #20
by Haskell Milano
https://bit.ly/events-dec-milano

Dec 9: #18 REMOTE Haskell Tutorial & Weihnachtsedition
by women in tech – Tübingen
https://bit.ly/events-dec-remote-haskell

Dec 9: Leverage the power of logic programming
using souffle-haskell
by London Haskell
https://bit.ly/events-dec-london

The Berlin Functional Programming Group will have
multiple events in December
https://bit.ly/events-bfpg

The upcoming month brings us the following Haskell community events:

Way out

Closing
Words

Besides BTG, we do a lot of open-source development, tutorials and guides writing,
mentorship. You can visit our website to read more about our work:

https://kowainik.github.io/

We have plenty of ideas and plans for future issues. Work on the magazine takes a lot of
time and effort. So your support is highly appreciated! You can support our work and
editions of BTG in particular on Ko-Fi or via GitHub Sponsorship:

https://ko-fi.com/kowainik
https://github.com/sponsors/vrom911
https://github.com/sponsors/chshersh

If you want to help with the magazine in any way, or you would like to have your own
rubric and produce themed content monthly, feel free to reach out to us! You can contact
us in Twitter @bind_the_gap or by dropping an email to xrom.xkov@gmail.com

See you in December, folks!

The pilot issue of Bind The Gap is brought to you by Kowainik —
Dmitrii Kovanikov and Veronika Romashkina.

We hope you enjoyed our first issue!

https://kowainik.github.io
https://ko-fi.com/kowainik
https://github.com/sponsors/vrom911
https://github.com/sponsors/chshersh
https://twitter.com/bind_the_gap
mailto:xrom.xkov@gmail.com

© All Rights Reserved, Kowainik 2020

ALL CHANGE PLEASE

VOIDThis is

where this issue
terminates

Please remember to take all your

with you when you leave the
train

Monads

